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In this paper we extend the branching aftershock sequence model to study the role of missing data at short
times and small amplitudes after a mainshock. We apply this model, which contains three parameters charac-
terizing the missing data, to the magnitude and temporal statistics of four aftershock sequences in California.
We find that the observed time-dependent deviations of the frequency-magnitude scaling from the Gutenberg-
Richter power law dependency can be described quantitatively by the model. We also show that, for the same
set of parameters, the model is able to explain quantitatively the observed magnitude-dependent deviations of
the temporal decay of aftershocks from Omori’s law. In addition, we show that the same sets of data can also
reproduce quite well the various functional forms of the probability density functions of the return times
between consecutive events with magnitudes above a prescribed threshold, as well as the violation of scaling
at short and intermediate time scales.
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I. INTRODUCTION

All earthquakes have associated aftershock sequences.
Apart from Båth’s law for the difference in magnitudes be-
tween the mainshock and the largest aftershock �1�, after-
shock sequences are generally characterized by two scaling
laws: �1� Gutenberg-Richter �GR� frequency-magnitude scal-
ing �2� and �2� Omori’s law for the temporal decay of after-
shocks �3�. But there exist systematic deviations from both
scaling laws at low magnitudes and small time windows after
the mainshock. An essential question is whether these differ-
ences are real �and generated, for example, by correlations�
or are due to aftershock catalogs that are not complete at
early times after a mainshock. It is well known that, at early
times after a mainshock, due to the large amount of seismic
noise, not all �small� aftershocks can be detected. It has been
suggested by Helmstetter et al. �4� that there exists a time-
dependent threshold mc�M , t�=M −4.5−0.75 log10�t� with
mc�2 where M is the mainshock magnitude and t is the time
�in days� elapsed after this mainshock, above which the cata-
log is complete. For further discussions of this problem, see
�5–9�.

Here we consider four Californian aftershock sequences
in a time window of 365 days after the mainshock: Landers
�M =7.3, June 28, 1992�, Hector Mine �M =7.1, October 16,
1999�, Northridge �M =6.7, January 17, 1994�, and Parkfield
�M =6.0, September 28, 2004� �10�. We model them by a a
self-similar, epidemic-type branching model for aftershock
sequences �11–13� �where we fit the parameters to the real
sequences�. Then we use probabilistic arguments in conjunc-
tion with the time-dependent threshold mc�M , t� to model the
amount of missing data. We show that by this extension,
which involves three fitting parameters, the observed time-
dependent deviations of the frequency-magnitude scaling

from the GR scaling can be explained quantitatively. After
having evaluated the fitting parameters by the frequency-
magnitude scaling, we use the same data sets to explain
�without any additional fitting parameters� the observed
anomalies in the magnitude dependency of the temporal de-
cay of aftershocks.

As a further study of the role of the missing data, we also
analyze the series of return times between consecutive events
with magnitudes above a prescribed threshold. We find that
the functional form of the probability density functions
�PDFs� of the return times, which is often an important tool
in risk estimation �see, e.g., �14,15� and references therein�,
is not universal, but differs for the different aftershock se-
quences and violates scaling at small and intermediate time
scales. We show that our model can also reproduce these
anomalies without any additional parameter.

II. BRANCHING MODEL

For simulations of earthquakes and their aftershock se-
quences, several branching models have been evaluated.
Among them are the epidemic-type aftershock sequence
�ETAS� model �16–18� and the related branching aftershock
sequence �BASS� model �11,12,19�; see also Felzer et al.
�13�. The concept of both models is the following. Each par-
ent earthquake creates its own aftershock sequence of daugh-
ter earthquakes, and each daughter earthquake then becomes
a parent which generates second-order aftershocks. This pro-
cess is then carried out to higher orders. Both models utilize
GR scaling �2� and Omori’s law �3�. One difference between
the ETAS and BASS models is that the ETAS model pre-
scribes a branching ratio in order to constrain the number of
aftershocks of each generation, while in the BASS model a
modified form of Båth’s law �20� is used. The other differ-
ence between the models is, that the number of aftershocks
of a parent event with magnitude mp is proportional to 10�mp

with ��b for the ETAS model, where b is the GR scaling*sabine.lennartz@uni-giessen.de
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parameter, but �=b for the BASS model. Since each parent
event with magnitude mp occurs with a probability propor-
tional to 10−bmp �GR�, they trigger events proportional to
10−�b−��mp. This means that in the ETAS model it is assumed
that small earthquakes collectively dominate earthquake trig-
gering, because their greater frequency overcomes their
small individual triggering potential �21�. In the BASS
model small earthquakes are as important to earthquake trig-
gering as larger ones. For that reason the BASS model is
fully self-similar, which is not the case for the ETAS model.
The following simulations will be based on the BASS model.

A. Generation of the aftershock sequences

We consider a �total� aftershock sequence, which consist
of several sequences of daughter earthquakes. The total se-
quence is governed by the GR scaling, Omori’s law, and
Båth’s law.

The GR relation �2� for the cumulative number of after-
shocks greater than a minimum magnitude mmin states

log10�N��mmin�� = a − bmmin. �1�

We assume that this relation is also valid for each sequence
of daughter earthquakes,

log10�Nd,i��mmin�� = ad,i − bmmin, �2�

where Nd,i��mmin� is the cumulative number of daughter
earthquakes of a parent event i with magnitude mp,i. This
assumption is consistent with Eq. �1� with
N��mmin�=�iNd,i��mmin� and

10a = �
i

10ad,i. �3�

Båth’s law �20� states that the magnitude of the largest
aftershock inferred from the GR relation �1� is required to be
a fixed value �m*�1.2 less than the magnitude of the main-
shock M, that is,

N���M − �m*�� = 1. �4�

It must be emphasized that �m* is not the magnitude differ-
ence between the mainshock and the largest aftershock �m
=M −mas,max. Substituting �4� into �1� requires

a = b�M − �m*� . �5�

We also assume that the modified form of Båth’s law is valid
for each sequence of daughter earthquakes with a parent
earthquake with magnitude mp,i,

ad,i = b�mp,i − �m
d,i
* � , �6�

where �m
d,i
* is the difference between the parent magnitude

and the largest daughter earthquake inferred from the GR
relation. We also assume that �m

d,i
* does not depend on the

parent magnitude, and skip the index i in the following. Sub-
stitution of �5� and �6� into �3� gives

10−b�m* = 10−b�m
d
*

+ �
i�0

10b�mp,i−M−�m
d
*�. �7�

Since the sum in Eq. �7� is positive, the value for �m
d
* has to

be a little larger than �m*�1.2. For the sake of generality,

we do not consider the actual Båth parameter for each se-
quence as a constant, but choose it randomly from a Gauss-
ian distribution with mean 1.4 and standard deviation 0.4.
For larger standard deviations, the system becomes unstable.
We found that the possible choices for the mean of �m

d
* are

between 1.3 and 1.5. For smaller mean values too many
events will be generated and for larger mean values too few
compared to the original data.

Finally, the generalized form of Omori’s law �22� states

r�t� =
dN

dt
=

1

��1 + t/c�p . �8�

The characteristic time c is a measure of the time delay be-
fore the onset of aftershock activity. Certainly c must be
finite in order to prevent a small time singularity. In this
paper we consider c as a constant. As for the GR scaling and
for Båth’s law, we assume that this law is also valid for each
sequence of daughter earthquakes:

rd,i�t� =
dNd,i

dt
=

��t − ti�
�d,i�1 + �t − ti�/c�p . �9�

ti is here the time of occurrence of the parent event and � is
the Heaviside function. If one sums now over all sequences
of daughter earthquakes, the rate is still approximately con-
stant for t�c and a decaying power law for very large times.
So this assumption is also justified.

To generate a complete aftershock sequence consisting of
several generations of aftershocks, we start with the first gen-
eration. The mainshock M is predefined, for example M
=7.3 for modeling the Landers aftershock sequence. This
mainshock is the parent event of the first generation with
magnitude mp.

The cumulative number of all daughter earthquakes Nd
with magnitudes greater than mmin is then given by �2� and
�6�:

Nd = 10b�mp−�m
d
*−mmin�. �10�

The b value can be fitted straightforwardly from the real data
when large time windows �of the order of one year� are con-
sidered. The fitted values from Landers, Hector Mine
Northridge, and Parkfield are listed in Table I. To obtain an
integer value for the actual value Nd we use the standard
rounding procedure.

TABLE I. Parameters of the branching model and optimized
parameters for the missing data for the four aftershock sequences
Landers, Hector Mine, Northridge, and Parkfield. The values for p,
M, c, and b are also listed in �23,24�. The error bars for �1, m2, and
�2 are 0.2.

Earthquake p M c �days� b �1 m2 �2

Landers 1.22 7.3 0.08 0.98 2.0 1.5 1.5

Hector Mine 1.21 7.1 0.024 1.01 1.8 1.4 1.5

Northridge 1.18 6.7 0.012 0.91 1.2 1.4 1.5

Parkfield 1.09 6.0 0.00395 0.89 0.7 1.2 1.5
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The magnitude of each of the Nd daughter earthquakes is
picked randomly from the GR probability distribution func-
tion p,

p�m� = b ln�10� � 10−b�m−mmin�. �11�

The next step is specify the time of occurrence of each
daughter earthquake. The rate of occurrence of daughter
earthquakes r at a time t after the parent earthquake, which
happened at time t0=0, is given by �9�, where the parameters
c and p are constrained by observations of the original after-
shock record for large magnitudes, where the data set can be
considered as complete. The fitted values we use are listed in
Table I. The total number of daughter earthquakes from �9� is

Nd = �
0

	

rd�t�dt =
c

�d�p − 1�
. �12�

From �9� and �12� the probability distribution function p of
the times of occurrence t of daughter earthquakes is given by

p�t� =
p − 1

c�1 + t/c�p . �13�

The time of occurrence of each of the daughter earthquakes
is picked randomly from this distribution, which is indepen-
dent of the chosen magnitude. Alternatively, we could first
choose the occurrence times by Eq. �13� and then choose the
magnitudes randomly by Eq. �11�. Thus the magnitudes re-
main uncorrelated in the version of the BASS model we use
here. Since we can compare our results only with real after-
shock sequences up to one year after a large mainshock, we
do not consider all later events.

This completes the first generation of aftershocks. Next
we assume that each aftershock of the first generation can
create its own aftershock sequence in the second generation.
The procedure is the same as above. The second generation
then can create, in exactly the same manner, the third gen-
eration of aftershocks and so on.

B. Missing data

Figure 1 shows the magnitudes of the four Californian
aftershock sequences Landers, Hector Mine, Northridge, and
Parkfield plotted as a function of the time �in days� elapsed
after the mainshock. One can clearly see that there are no
small events in the very beginning. The reason for this may
be correlations, where large events are preferentially fol-
lowed by large events; see, for example, �25,26�. Another
reason for this may be that at early times the catalogs are not
complete for small events because they are lost in the seismic
noise generated by large early events, where according to
Fig. 1 the completeness depends somehow on the mainshock
magnitude M and the time t �in days� elapsed after the main-
shock. Here we follow this direction. It has been suggested
by Helmstetter et al. �4� that the catalogs are complete only
above a threshold

mc�M,t� = max�m1�M,t�,m2� �14�

with

m1�M,t� = M − 4.5 − 0.75 log10�t� �15�

and

m2 = 2. �16�

The motivation for the first threshold m1 is that after a main-
shock it takes some time until the earth has calmed down,
such that new events can be observed again. The second
threshold m2 is motivated by the �time-independent� sensibil-
ity of the seismographs. Events below m2 are so weak that
the seismographs do not always recognize them as separate
events.

Since mainshocks and aftershocks cannot be distinguished
a priori, we assume that relations �14�–�16� do not hold ex-
clusively for a mainshock but for any shock with magnitude
M and t the time elapsed after this event. But the condition
does not tell us which data are missing. Clearly, as seen in
Fig. 1, not all data below the threshold from Eq. �14� can be
considered as missing. Only a certain fraction of magnitudes
below mc�M , t� can be observed, and the probability that a
given event below the threshold occurs should depend on its
magnitude. Here we assume that magnitudes m below m1
�m2� from Eq. �14� occur with a probability

p1�m1,m� = 10−�1�m1−m� �17�

and

p2�m2,m� = 10−�2�m2−m�. �18�

This assumption is motivated by the Boltzmann distribution
e−
V, where mc−m plays the role of the potential V and � the
role of the inverse temperature 
. Here we consider �1, �2,
and m2 as fitting parameters. In the limit �1=�2=0 all events
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FIG. 1. �Color online� Magnitudes m of the four Californian
aftershock sequences �a� Landers, �b� Hector Mine, �c� Northridge,
and �d� Parkfield detected at time t �in days� after the mainshock.
One can clearly see that the catalogs are not complete at short times
after the mainshock because of small missing data points. The
straight lines are the thresholds proposed by Helmstetter et al. �4�
�see also Eqs. �15� and �16�� above which the catalogs should be
complete.
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are observed, while in the opposite limit �1=�2=	 all data
below m1 and m2 are deleted.

Accordingly, for modeling an incomplete aftershock se-
quence we proceed as follows. After having obtained a com-
plete aftershock sequence �described in Sec. II A�, we check
for each aftershock if it is above or below mc�m1 ,m2�. If it is
above, this event is observed. If it is below, we choose two
random numbers r1 and r2 between 0 and 1. Only if r1 is
below p1 and r2 is below p2 will this event be observed.
Otherwise it is deleted from the catalog.

We would like to emphasize that �1, �2, and m2 are the
only fitting parameters for describing the missing data, since
the threshold mc�M , t� from Eq. �15� does not include any
fitting parameter. Of course, �1, �2, and m2 depend on the
functional form of m1 and for a different choice of m1 we
will obtain different values for these parameters. In this pa-
per, in order to minimize the number of fitting parameters,
we have chosen m1 from the suggestion of Helmstetter et al.
�4�. In the following, we will show that by an optimum fit of
�1, �2, and m2 we can quantitatively describe the time-
dependent deviations of the frequency-magnitude scaling
from GR scaling. Then we will take these fitting parameters
for granted and show that we obtain a parameter-free de-
scription of the magnitude dependence of the deviations
from Omori’s law, as well as a parameter-free description of
the PDF of the return times between consecutive events
above some magnitude threshold for all the aftershock se-
quences we consider.

III. RESULTS

Next we consider the four Californian aftershock se-
quences Landers, Hector Mine, Northridge, and Parkfield
and compare them with modeled sequences with mmin=0 for
the two �unrealistic� limiting cases �1=�2=0 and �1=�2
=	 with m2=2, which we will refer to as model 1 and model
2, respectively, as well as for the best fit to the real data,
which we call model 3. In the modeled sequences, the pa-
rameter p, M, c, and b are taken from the real data �see Table
I� and �m

d
* is chosen randomly from a Gaussian distribution

with mean 1.4 and variance 0.2. This choice guarantees that
the total number of shocks after one year �see, e.g., the upper
curves in the left column of Fig. 2� is the same as for the real
data.

First we consider the frequency-magnitude scaling for the
real and the three modeled Landers aftershock sequences in
five different time windows �t�0.1, 1, 10, 92, and 365 days�
after the mainshock, as shown in the left-hand side of Fig. 2.
Figure 2�a� shows the data of model 1 where �1=�2=0. The
unaltered GR frequency-magnitude scaling is clearly observ-
able, because there are no missing data. Since the parameter
b is fitted from the real data, the slope in Fig. 2�a� is identical
with the slope in Fig. 2�g� above the crossover magnitude.

Figure 2�c� shows the cumulative distribution of model 2
in the opposite limit where �1=�2=	 with m2=2. All events
below the thresholds m1 and m2 �Eqs. �15� and �16�� have
been deleted. In this case one can see already the character-
istic time-dependent crossover m*�t�, which is observable in
the real data �Fig. 2�g��. Below m*�t�, the cumulative number

N is constant, while above m*�t�, N decays by the GR
frequency-magnitude scaling. The time dependence of the
crossover magnitude reflects the time dependence of the
threshold m1. If m1 did not depend on time but was a con-
stant depending on the magnitude of the mainshock, then the
crossover would be time independent. The fact that this is
not the case is, in our opinion, a clear indication of the ne-
cessity of a time-dependent threshold m1.

But the agreement between model 2 and the real data is
not perfect. Since we omitted all data below m1 and m2=2,
the plateau values are too small and the crossover between
plateau and GR scaling behavior is too abrupt. This points to
the necessity of choosing the second threshold m2 smaller
and also of choosing finite values for �1 and �2, because then
events with small magnitudes will have a finite probability to
be observed. While �1 mainly determines the height of the
plateau for small time windows, the height of the plateau for
long time windows is mainly determined by the threshold m2
and by �2. Accordingly, �1 can be used to fit the plateaus for
short times, the threshold m2 can be used to fit the crossover
point for long times, and the exponent �2 can be used to fit
the smoothness of the crossover. We find that for Landers the
optimized values are �1=2.0, �2=1.5 and m2=1.5. Figures
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FIG. 2. �Color online� Comparison of the Landers aftershock
sequence ��g� and �h�� with three model sequences ��a�–�f��. Left
column: Cumulative numbers of aftershocks with magnitudes
greater than m, N��m�, are given as a function of m for five differ-
ent time windows �t�365, 92, 10, 1, and 0.1 days from top to
bottom� after the mainshock. Right column: Daily rates r�t� of af-
tershocks with magnitudes m�0, 2, 3, and 4 from top to bottom.
�a� and �b� refer to the complete model �model 1�, �c� and �d� to the
model where all data below the thresholds proposed by Helmstetter
et al. �4� �see also Eqs. �15� and �16�� have been removed �model
2�, and �e� and �f� refer to the optimized model �model 3�, where the
parameters are listed in Table I. For the cumulative number of af-
tershocks, as well as for the daily rates, the agreement between the
optimized model data �model 3� and the real data is striking.
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2�e� and 2�g� show that for these values the agreement be-
tween the model data and the real data is nearly perfect.

After these parameters have been specified by the GR
scaling, we do not have any free parameter left for fitting to
Omori’s law �for different magnitudes� and the PDF of the
return times. We will show in the following that the best-
fitted model for the GR scaling is also the best model for
Omori’s law and the PDF of the return times.

The daily rates rm�t� of the four Landers aftershock se-
quences above magnitudes m=0, 2, 3, and 4 are shown in the
right-hand side of Fig. 2. Again, the real Landers sequence
�Fig. 2�h�� is compared with �Fig. 2�b�� model 1, �Fig. 2�d��
model 2, and �Fig. 2�f�� model 3. As expected, in Fig. 2�b�
the data simply follow Omori’s law with a magnitude-
dependent initial rate 1 /� and a constant c value. Figure 2�d�
shows that model 2 already describes the data quite well.
Now the time dependence of the thresholds is reflected in
rm�t�. For a constant threshold m1 the daily rates rm�t� would
keep satisfying Omori’s law for m�m1, while they would
coincide for m�m1. As can be seen immediately from in-
specting Fig. 2�h�, this is not the case for the real data. For
the time-dependent threshold m1�t� the situation is different.
In the time frame considered in Fig. 2, the maximum thresh-
old occurs at t=10−2 days and is given by m1�t=10−2 days�
=M −3. Accordingly, for m�M −3, the rate rm�t� is not af-
fected by the missing data in the considered time frame and
satisfies Omori’s law. For m�M −3, there exists a crossover
time t*�m� above which the rate also satisfies Omori’s law. It
can be easily shown that t*�m� is given by

t*�m� = 10�M−4.5�/0.75−m/0.75. �19�

For t� t*�m�, only events above m1�t� appear and hence

rm„t � t*�m�… = rm1�t��t� . �20�

Accordingly, for all m�m1�t�, the rates collapse and are
given by

rm1�t��t� =
p − 1

c

10−bm1�t�

�1 + t/c�p �21�



t0.75b

�1 + t/c�p . �22�

As a consequence, below the crossover time t*�m� the result-
ing Omori rate rm�t� is no longer a monotonic function of
time: For t�c it increases as t0.75b while for t�c it decreases
as t0.75b−p. This nonmonotonic behavior can be observed in
Figs. 2�d�, 2�f�, and 2�h�. This figure shows that model 2
describes the real data quite well, but in the optimized ver-
sion �with the same parameter values �1=2.0, �2=1.5, and
m2=1.5 as in Fig. 2�e��, which is shown in Fig. 2�f�, we
observe the best agreement between the real and the model
data.

Figures 3–5 show the cumulative numbers N��m� and the
rates r�t� for the Hector Mine, Northridge, and Parkfield
records. As in Fig. 2 the optimum parameters �model 3� have
been obtained from a fit to the cumulative number of after-
shocks in several time windows. In this sense the fits shown

in Figs. 3�f�, 4�f�, and 5�f� are parameter-free. Again the
agreement between the real and model data is striking. Table
I lists the optimized parameters �1, �2, and m2 for the four
aftershock sequences considered. Note that �2 and m2 are
nearly constant, while �1 seems to decrease approximately
linearly with decreasing mainshock magnitude M, �1�M
−5.3.

Since the threshold m1 also depends linearly on the main-
shock magnitude M, the fraction of observed data with small
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FIG. 3. �Color online� Same as Fig. 2, but for the Hector Mine
aftershock sequence.
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magnitudes roughly decreases as 10−�M − 5.3�2
. As a conse-

quence, the incompleteness of a catalog is drastically en-
hanced for large mainshocks, and the time dependence of the
threshold leads to the time dependence of the crossover in
the GR distribution. For Landers �M −5.3=2.0�, in Figs. 2�e�
and 2�g�, this time dependence is clearly observable. In con-
trast, after small mainshocks, the constant threshold m2 be-
comes relevant. This is the case for Parkfield �M −5.3=0.7 in
Figs. 5�e� and 5�g��, where the crossover is nearly time in-
dependent.

Next we consider the PDF, Pm��t�m, of the return times
�t between events with magnitudes greater than m. Pm��t� is
a central quantity in risk estimation and has been studied for
a large number of complex systems �for references, see
�14,15��. Based on studies of Californian seismicity, Bak et
al. �27� proposed a general scaling law for return times, and
a number of authors �25,28–39� have extended this work
recently. In this paper, we study the PDFs of the return times
between events with magnitudes m�1, 2, and 2.5 for our
four Californian aftershock sequences �open symbols in Figs.
6 and 7�. We focus on the question of whether the optimized
model �full symbols in Figs. 6 and 7� is able to describe
quantitatively the different features of the PDFs of the four
aftershock sequences. For the sake of clarity the PDFs of the
different aftershock sequences have been shifted by a factor
of 1000.

Figure 6 shows the PDFs of the return times of the ob-
served and optimized model data. It is remarkable that both
data sets collapse and cannot be distinguished a priori from
each other. For return times above 104 s the PDFs become
strongly magnitude dependent and decay more slowly for
larger thresholds, while for return times below 10 s the data
scatter. This scatter increases with decreasing magnitude of
the mainshock and is thus most pronounced for the Parkfield

record �M =6.0�. The functional form of the PDF at interme-
diate time scales ranges from a power law behavior for Park-
field to a more curved exponential kind of behavior for
Landers.

Figure 7 shows the data in a rescaled form, where the x
axis is divided by the mean return time ��t	 and the y axis is
multiplied by ��t	. For comparison, the figure shows also the
PDF obtained from model 1 �dotted symbols�. Since the
model is fully self-similar, the data scale and the PDF exhib-
its a power law behavior at intermediate time scales, which is
most pronounced for smaller values of the mainshock mag-
nitude M.

In contrast to model 1, both observational and optimized
model data spread considerably below a crossover time �t*
which increases with increasing magnitude of the main-
shock. Above �t* the Parkfield data show power law scaling
�as for model 1� while for the other three sequences the data
for different thresholds do not scale. Below �t* the PDFs for
m�1 are well below the PDFs for m�2.5, while for inter-
mediate return times they are above them.

It can be seen that this behavior is caused by the missing
data by which a fraction of small return times are combined
to give larger return times. As a consequence, the number of
small return times is decreased and the number of interme-
diate return times is increased. Since the number of missing

10
0

10
2

10
4

10
6

N
(≥

m
)

10
0

10
3

10
6

r(
t)

[1
/d

]
10

0

10
2

10
4

10
6

N
(≥

m
)

10
0

10
3

10
6

r(
t)

[1
/d

]

10
0

10
2

10
4

10
6

N
(≥

m
)

10
0

10
3

10
6

r(
t)

[1
/d

]

0 2 4 6
m

10
0

10
2

10
4

10
6

N
(≥

m
)

t≤ 365 d
t≤ 92 d
t≤ 10 d
t≤ 1 d
t≤ 0.1 d

10
-2

10
-1

10
0

10
1

10
2

10
3

t [d]

10
0

10
3

10
6

r(
t)

[1
/d

]

m≥0
m≥2
m≥3
m≥4

Parkfield

Parkfield model 1 Parkfield model 1

(a) (b)

(c) (d)

Parkfield model 2 Parkfield model 2

Parkfield model 3 Parkfield model 3

Parkfield

(e) (f)

(g) (h)

FIG. 5. �Color online� Same as Fig. 2, but for the Parkfield
aftershock sequence.

���������
�
�
��

�
�

��
��

�

��
��

�

��
��

��
��

��
��

�
�
�
�
��
��

���
�
�
��

�
�

��
��

�
�

��
�

��

��
��

�

���
�
���
��

���
�
�
��

�
��

�
��

�
�

�
�

�

��

�

��
����

�
��
�����

�
�
��

�
�
��

�

��
��

�
�

��
��

��
��

�
�
����

�
���

��
��

�
�

��
��

�
�

��
��

�
�

��
��

�

��

����
�
��
��

�
�
��

�
�

��
�
�

��
�
�

�
�

�
�

�
��

�
�

��
�
����

�
�
��
��

�
��
��

�
�
��

�
��

�
�

��

��
��

�

��
�
������

�
��
��

�
�

��
��

�
�

��
��

�
�
��

��
��

�
�

��

�

�
��
���

��
��

�
��
��

�
�

��
��

�
�

��
��

�
�
�

�

�
�

��
��

�
�

��
��

�
��
���
��

�
�
��
��

�
��

�
�
��

�
��
��

�
�

��
��

��
��

�

�
���

�
��

�
�
��

�
��
��

�
�
��

�
�

��
��
��

�

��
��

�

��

�
�
���

�

��
��

�
��
��

�
���

����

��
��
��

�

��
��

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

∆t [s]

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

P m
(∆

t)
[a

rb
.u

ni
ts

]

m≥1.0 (model 3)
m≥2.0 (model 3)
m≥2.5 (model 3)
m≥1.0 (real)��
m≥2.0 (real)��

m≥2.5 (real)
��
��

Landers

Hector Mine

Northridge

Parkfield

FIG. 6. �Color online� Probability density function �PDF�
Pm��t� of the return times �t of four Californian aftershock se-
quences above the magnitude thresholds m=1.0 �circles�, 2.0 �tri-
angles�, and 2.5 �squares�. The filled symbols are the data of the
optimized model, where missing data have been taken away with
some probability �model 3� �see also Eqs. �17� and �18��. The pa-
rameters are listed in Table I. The open symbols are the real data.
For the sake of clarity the data of the different aftershock sequences
have been shifted by a factor of 1000. For all four aftershock se-
quences, the agreement between the optimized model data �model
3� and the real data is nearly perfect.
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data points depends on the threshold, this leads to the ob-
served deviations from scaling, which become more pro-
nounced with an increasing mainshock magnitude.

The agreement between model 3 and the observational
data is substantial for small return times, where only small
deviations occur for Hector Mine, and even quantitative for
intermediate and large return times. We consider it as re-
markable that this agreement has been reached without any

additional fitting parameters, since �1, �2, and m2 have been
fixed previously.

IV. CONCLUSION

In this paper we extended the epidemic-type and fully
self-similar BASS model to account for the role of missing
data at low magnitudes and short times after the mainshock,
and applied our model to the aftershock sequences of four
Californian earthquakes. The model contains three param-
eters, one for the threshold, above which the catalogs are
complete, and two parameters specifying the fraction of ob-
served data below the threshold. We found that the observed
anomalies in the frequency-magnitude scaling could be de-
scribed quantitatively by this model. We also showed that for
the same set of parameters the model was able to reproduce
the anomalies in the temporal decay of aftershocks, as well
as the behavior of the PDF of the return times. In addition,
we showed that for large mainshocks with magnitude M the
fraction of observed data with small magnitudes roughly de-
creases as 10−�M − 5.3�2

. As a consequence, the catalogs of
documented earthquakes are considerably more incomplete
in aftershock sequences of big events than of small ones.

We would like to emphasize that our model does not in-
clude any kind of correlation among the events of an after-
shock sequence. The data have been constructed in an uncor-
related way, and also the missing data have been eliminated
randomly in a probabilistic manner. We cannot exclude the
possibility that, in addition to the trendlike behavior of the
magnitudes introduced by the missing data, there may also
exist correlations between the observed events. Here we have
shown that we can explain all kinds of anomalies by the
assumption of uncorrelated data alone. We can exclude the
case that the anomalies are exclusively due to long-term cor-
relations, since the scaled PDFs of the return times of long-
term correlated data collapse for different thresholds �40�,
which is absent in the aftershock sequences of large main-
shocks.
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FIG. 7. �Color online� Same as Fig. 6, but with rescaled axes.
The x axis has been divided by the mean return time ��t	 for each
data set, and the y axis has been multiplied by ��t	, respectively. In
addition to Fig. 6, the data of model 1 �dotted symbols� are also
shown.
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